1.

2.

3.

4.
(i) Each small tile has area $100 \mathrm{~cm}^{2}$ so 1000x

Similarly 900y
So $1000 \mathrm{x}+900 \mathrm{y} \geq 400 \times 300=120000$
(ii) $\mathrm{y} \leq 100$
$10 \mathrm{x} \leq 9 \mathrm{y}$
(iii) e.g. minimise $1.5 \mathrm{x}+2 \mathrm{y}$

Integer solution required, so $\mathrm{x}=60, \mathrm{y}=67$, cost $=224$
(iv) wastage or design

M1	areas
A1	tile areas

A1
B1
B1 B1

B1

B3 lines
B1 shading

M1 solving
A1 $x=59-61 \quad y=66-68$
A1 220-228

B2
5.

(i) \quad e.g.	0 to $4 \rightarrow>$ stagger left
	5 to $9 \rightarrow>$ stagger right
	+ accumulation

(ii) probably one of:

(iii) repeat
relative frequency
(iv) e.g. 0 to $2 \rightarrow>$ stagger left

3 to $8->$ stagger right
9 reject and redraw
(v) e.g.

run 1	R	L	R	L	L	R		
run 2	R		L		R	R	L	R
run 3	R	R	L	L	L	L		
run 4	L	L	R	L	R	R		
run 5	R	R	R	$*$				
run 6	L	R	R		R		R	$*$
run 7	R	R	L	R	R	$*$		
run 8	R	R	L	R	R	$*$		
run 9	R		R		R	$*$		
run 10	L	R	R	L	R	R		

Probability estimate $=0.5$
(Theoretical $=0.7^{3}+5 \times 0.7^{4} \times 0.3=0.70315$)

B1
B1
M1 reject some
A1 proportions
A1 efficient

M1
A2 (-1 each wrong row)

B1 falling in
M1 probability
A1
6.

Duration $=24$ months
Critical : A; F; J; G
(iii) Crash F by 1 month and G by 1 month at a cost of $£ 6 \mathrm{~m}$.
(iv) Crash G by 2 months at a cost of $£ 8 \mathrm{~m}$.

M1 activity-on-arc
A1 D, E, H and K
A1 F
A1 I and J
A1 G
M1 forward pass
A1
M1 backward pass
A1

B1 cao
B1 cao
B1 F by 1 month
B1 G by 1 month
B1 £6m
M1 G only
A1 $£ 8 \mathrm{~m}$

